Что такое трансформатор, история, устройство.

 Трансформа́тор (от лат. transformo — преобразовывать) — статическое (не имеющее подвижных частей) электромагнитное устройство, предназначенное для преобразования посредством электромагнитной индукции системы переменного тока одного напряжения в систему переменного тока другого напряжения при неизменной частоте и без существенных потерь мощности.

Силовой трансформатор - стационарный прибор с двумя или более обмотками, который посредством электромагнитной индукции преобразует систему переменного напряжения и тока в другую систему напряжения и тока, как правило, различных значений при той же частоте в целях передачи электроэнергии.

история создания

Для создания трансформаторов необходимо было изучение свойств материалов: неметаллических, металлических и магнитных, создания их теории.

Первыми в этом направлении были работы профессора Московского Университета Александра Григорьевича Столетова: он обнаружил петлю гистерезиса и доменную структуру ферромагнетика (80-е)

Братья Гопкинсоны разработали теорию электромагнитных цепей.

В 1831 году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции, лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества.

Схематичное изображение будущего трансформатора впервые появилось в 1831 году в работах Фарадея и Генри. Однако ни тот, ни другой не отмечали в своём приборе такого свойства трансформатора, как изменение напряжений и токов, то есть трансформирование переменного тока[2].

В 1848 году французкий механик Г. Румкорф изобрёл индукционную катушку. Она явилась прообразом трансформатора.

30 ноября 1876 года, дата получения патента Яблочковым Павлом Николаевичем, считается датой рождения первого трансформатора. Это был трансформатор с разомкнутым сердечником, представлявшим собой стержень, на который наматывались обмотки.

И так:"Днем рождения" трансформаторов считают 30 ноября 1876 года, когда выдающийся русский электротехник и изобретатель Павел Николаевич Яблочковполучил французский патент, в котором был описан принцип действия и способ применения трансформатора.Но щитать то, что именно Яблочков единолично разработал силовой трансформатор былобы ошибочно, над этой идеей работало много ученых до и после его патента.



Русский электротехник, создатель техники трехфазного тока М. Доливо-Добровольский в 1890 г. предлагает конструкцию трехфазного трансформатора, который в трехфазной сети позволит заменить три однофазных агрегата. Впоследствии значительную роль в совершенствовании и развитии конструкции трехфазных трансформаторов сыграли англичанин Ферранти, американец Дж. Вестингауз, серб Н. Тесла. 

Именно благодаря открытиям и достижениям отечественных ученых в России на рубеже XIX и XX веков была выбрана правильная парадигма - ориентировать дальнейшее развитие электроэнергетики на применение 
переменного тока высокого напряжения в противовес зарубежным концепциям в пользу постоянного тока и техники низких напряжений. 

Началом производства силовых трансформаторов в России можно считать ноябрь 1928 г., когда начал работать Московский трансформаторный завод (впоследствии - Московский электрозавод). Вскоре продукция завода стала удовлетворять потребности страны в высоковольтных трансформаторах. Уже в предвоенный период завод выпускал мощные силовые трансформаторы напряжением до 220 кВ. Первые советские трансформаторы создавались по образцу трансформаторов фирмы Дженерал Электрик (США) и при участии ее консультанта. 

После войны были построены новые предприятия и, прежде всего, Запорожский трансформаторный завод, Тольяттинский электротехнический завод и др. Вскоре эти два завода приняли на себя основную нагрузку по производству высоковольтных силовых трансформаторов для энергетики. Московский электрозавод стал все больше специализироваться на изготовлении силовых трансформаторов для электрических печей, шунтирующих реакторов всех классов напряжения, измерительных трансформаторов напряжения, регулировочных трансформаторов и др.

Изготовление силовых трансформаторов предельных мощностей постепенно сосредотачивалось на Запорожском трансформаторном заводе, а выпуск значительного количества трансформаторов небольшой мощности (до напряжения 20 кВ) - на Минском электротехническом заводе, построенном в конце 50-х годов.

После распада СССР значительное количество трансформаторных мощностей оказалось за пределами России.

Отечественным трансформаторным заводам - ОА ОХК 'Электрозавод' (г. Москва), ОАО 'Трансформатор' (г. Тольятти), ОАО 'Уралэлектротяжмаш' (г. Екатеринбург), ОАО Биробиджанский завод силовых трансформаторов - в новых условиях пришлось внести существенные коррективы в выпускаемую номенклатуру и сбытовую политику, чтобы противостоять в конкурентной борьбе своим недавним партнерам из стран ближнего зарубежья и мощным фирмам Европы и США.

Прогресс трансформаторостроения в ХХ веке как у нас в стране, так и за рубежом в основном характеризовался следующими направлениями:
а) обеспечение повышения предельных параметров трансформаторов в связи с ростом мощности энергосистем и энергоблоков;
б) снижение размеров, массы и потерь энергии в каждом трансформаторе определенной мощности и класса напряжения. 


Прогресс в технико-экономических показателях трансоформаторов в первую очередь обусловлен улучшением качества активных и изоляционных материалов, а также конструктивными достижениями, реализуемыми через так называемую параметрическую и структурную оптимизацию. Первая позволяет находить наилучшие значения параметров, вторая - наиболее рациональные конструктивные схемы взаимного расположения деталей и узлов трансформатора. 

Как известно, материалы, используемые при производстве трансформаторов, подразделяются на
 активные, изоляционные и конструкционные. В качестве активных материалов применяются: 
-электротехническая сталь - для изготовления магнитопровода;
-медь - для изготовления обмоток.

Одним из основных активных материалов трансформатора является тонколистовая электротехническая сталь. В течение многих лет для магнитных систем трансформаторов применялась листовая сталь горячей прокатки с толщиной листов 0,5 или 0,35 мм. Качество этой стали постепенно улучшалось, однако удельные потери в ней были высоки. 

Появление в конце 40-х годов холоднокатаной текстурованной стали, т.е. стали с определенной ориентировкой зерен (кристаллов), имеющей значительно меньшие удельные потери и более высокую магнитную проницаемость, позволило увеличить индукцию в магнитной системе и существенно уменьшить массу активных материалов при одновременном уменьшении потерь энергии в трансформаторе. Вместе с этим было получено уменьшение расхода остальных материалов - изоляционных, конструкционных, масла и т.д. 

Применение холоднокатаной стали позволило также уменьшить внешние габариты и увеличить мощность трансформатора в одной единице, что особенно важно для трансформаторов большой мощности, внешние размеры которых ограничиваются условиями перевозки по железным дорогам.

Одной из существенных особенностей холоднокатаной стали является анизотропия ее магнитных свойств, т.е. различие этих свойств в различных направлениях внутри листа или пластины стали. Наилучшие магнитные свойства (наименьшие удельные потери и наибольшую магнитную проницаемость) эта сталь имеет в направлении прокатки. 

Конструкция магнитной системы трансформатора с учетом анизотропии магнитных свойств холоднокатаной стали должна быть выполнена так, чтобы во всех ее частях - стержнях и ярмах - вектор индукции магнитного поля имел направление, совпадающее с направлением прокатки стали.

Существенно улучшить параметры трансформаторов можно посредством перехода на так называемые аморфные стали. Однако технологии подобного перехода пока не отработаны. Отдельные изготовленные за рубежом образцы с магнитопроводами из аморфной стали слишком дороги, что не позволяет пока говорить о ее массовом использовании при производстве трансформаторов. 

Другой активный материал трансформатора - металл обмоток - в течение долгого времени не подвергался изменению. Низкое удельное электрическое сопротивление, легкость обработки (намотки, пайки), удовлетворительная стойкость по отношению к коррозии и достаточная механическая прочность электролитической меди сделали ее единственным материалом для обмоток трансформаторов в течение ряда десятилетий. Несмотря на это, относительно малое мировое распространение природных запасов медных руд заставило искать пути замены меди другим металлом, и в первую очередь, алюминием, более широко распространенным в природе. 

 

 

При переходе на алюминиевые обмотки был решен ряд задач технологического характера, связанных с технологией намотки алюминиевых обмоток, пайкой и сваркой алюминия. В настоящее время все новые серии трансформаторов общего назначения мощностью до 16 000 кВ•А включительно проектируются с алюминиевыми обмотками.

Открытие в 80-х годах проводниковых материалов, обладающих свойством высокотемпературной сверхпроводимости, открыло новые перспективы создания трансформаторов меньших габаритов со сниженными потерями. Удалось преодолеть главное препятствие использования сверхпроводимости: громоздкие криогенные системы для получения жидкого гелия были заменены простыми установками жидкого азота при атмосферном давлении. Именно это направление совершенствования конструкции трансформаторов может рассматриваться в качестве одного из наиболее перспективных. 

Применение в электросетях

Поскольку потери на нагревание провода пропорциональны квадрату тока, проходящего через провод, при передаче электроэнергии на большое расстояние выгодно использовать очень большие напряжения и небольшие токи. Из соображений безопасности и для уменьшения массы изоляции в быту желательно использовать не столь большие напряжения. Поэтому для наиболее выгодной транспортировки электроэнергии в электросети многократно применяют трансформаторы: сначала для повышения напряжения генераторов на электростанциях перед транспортировкой электроэнергии, а затем для понижения напряжения линии электропередач до приемлемого для потребителей уровня.

конструкция

Самый простой по конструктивному выполнению трансформатор состоит из магнитопровода (магнитная система) и обмоток трансформатора.

Магнитная система 

Магнитная система (магнитопровод) трансформатора — комплект элементов (чаще всего пластин) электротехнической стали или другого ферромагнитного материала, собранных в определённой геометрической форме, предназначенный для локализации в нём основного магнитного поля трансформатора. Магнитная система в полностью собранном виде совместно со всеми узлами и деталями, служащими для скрепления отдельных частей в единую конструкцию, называется остовом трансформатора.

Часть магнитной системы, на которой располагаются основные обмотки трансформатора, называется - стержень

Часть магнитной системы трансформатора, не несущая основных обмоток и служащая для замыкания магнитной цепи, называется - ярмо

В зависимости от пространственного расположения стержней, выделяют:
Плоская магнитная система - магнитная система, в которой продольные оси всех стержней и ярм расположены в одной плоскости
Пространственная магнитная система - магнитная система, в которой продольные оси стержней или ярм, или стержней и ярм расположены в разных плоскостях
Симметричная магнитная система - магнитная система, в которой все стержни имеют одинаковую форму, конструкцию и размеры, а взаимное расположение любого стержня по отношению ко всем ярмам одинаково для всех стержней
Несимметричная магнитная система - магнитная система, в которой отдельные стержни могут отличаться от других стержней по форме, конструкции или размерам или взаимное расположение какого-либо стержня по отношению к другим стержням или ярмам может отличаться от расположения любого другого стержня


Обмотки

Основным элементом обмотки является виток — электрический проводник, или ряд параллельно соединённых таких проводников (многопроволочная жила), однократно обхватывающий часть магнитной системы трансформатора, электрический ток которого совместно с токами других таких проводников и других частей трансформатора создаёт магнитное поле трансформатора и в котором под действием этого магнитного поля наводится электродвижущая сила.

Обмотка — совокупность витков, образующих электрическую цепь, в которой суммируются ЭДС, наведённые в витках. В трёхфазном трансформаторе под обмоткой обычно подразумевают совокупность обмоток одного напряжения трёх фаз, соединяемых между собой.

Проводник обмотки в силовых трансформаторах обычно имеет квадратную форму для наиболее эффективного использования имеющегося пространства (для увеличения коэффициента заполнения в окне сердечника). При увеличении площади проводника проводник может быть разделён на два и более параллельных проводящих элементов с целью снижения потерь на вихревые токи в обмотке и облегчения функционирования обмотки. Проводящий элемент квадратной формы называется жилой.
 
Транспонированный кабель применяемый в обмотке трансформатора

Каждая жила изолируется при помощи либо бумажной обмотки, либо эмалевого лака. Две отдельно изолированных и параллельно соединённых жилы иногда могут иметь общую бумажную изоляцию. Две таких изолированных жилы в общей бумажной изоляции называются кабелем.

Особым видом проводника обмотки является непрерывно транспонированный кабель. Этот кабель состоит из жил, изолированных при помощи двух слоёв эмалевого лака, расположенных в осевом положении друг к другу, как показано на рисунке. Непрерывно транспонированный кабель получается путём перемещения внешней жилы одного слоя к следующему слою с постоянным шагом и применения общей внешней изоляции.

Бумажная обмотка кабеля выполнена из тонких (несколько десятков микрометров) бумажных полос шириной несколько сантиметров, намотанных вокруг жилы. Бумага заворачивается в несколько слоёв для получения требуемой общей толщины.
 
Дисковая обмотка

Обмотки разделяют по:
Назначению 
Основные — обмотки трансформатора, к которым подводится энергия преобразуемого или от которых отводится энергия преобразованного переменного тока.
Регулирующие - при невысоком токе обмотки и не слишком широком диапазоне регулирования, в обмотке могут быть предусмотрены отводы для регулирования коэффициента трансформации напряжения.
Вспомогательные — обмотки, предназначенные, например, для питания сети собственных нужд с мощностью существенно меньшей, чем номинальная мощность трансформатора, для компенсации третей гармонической магнитного поля, подмагничивания магнитной системы постоянным током, и т. п.
Исполнению 
Рядовая обмотка - витки обмотки располагаются в осевом направлении во всей длине обмотки. Последующие витки наматываются плотно друг к другу, не оставляя промежуточного пространства.
Винтовая обмотка - винтовая обмотка может представлять собой вариант многослойной обмотки с расстояниями между каждым витком или заходом обмотки.
Дисковая обмотка - дисковая обмотка состоит из ряда дисков, соединённых последовательно. В каждом диске витки наматываются в радиальном направлении в виде спирали по направлению внутрь и наружу на соседних дисках.
Фольговая обмотка - фольговые обмотки выполняются из широкого медного или алюминиевого листа толщиной от десятых долей миллиметра до нескольких миллиметров.

Другие элементы трансформатора не принимают непосредственного действия в преобразовании электроэнергии, но без них работа трансформатора может быть хужэ, или дажэ невозможна.

Клеммы

Клеммы в сухих трансформаторах могут быть выведены на клеммную колодку в виде болтовых контактов или соединителей с плоскими контактами. Клеммы могут размещаться внутри корпуса. В герметичных масляных или жидкостных трансформаторах обеспечивается перемещение электрических соединений с внутренней стороны бака наружу:
Проходные изоляторы - клеммный блок в форме проходного изолятора переносит соединения из внутренней изоляционной среды трансформатора во внешнюю изоляционную среду, бывают: 
Низковольтные проходные изоляторы
Конденсаторные проходные изоляторы
Сильноточные проходные изоляторы
Кабельные соединения
Соединения с элегазовыми устройствами SF6


Охладители

Охлаждающее оборудование забирает горячее масло в верхней части бака и возвращает охлажденное масло в нижнюю боковую часть. Холодильный агрегат имеет вид двух масляных контуров с непрямым взаимодействием, один внутренний и один внешний контур. Внутренний контур переносит энергию от нагревающих поверхностей к маслу. Во внешнем контуре масло переносит тепло к вторичной охлаждающей среде. Трансформаторы обычно охлаждаются атмосферным воздухом.

Виды охладителей:
Радиаторы, бывают разных типов. В основном они представляют собой множество плоских каналов в пластинах с торцевым сварным швом, которые соединяют верхний и нижний коллекторы.
Гофрированный бак является одновременно и баком и охлаждающей поверхностью для распределительных трансформаторов малой и средней мощности. Такой бак имеет крышку, гофрированные стенки бака и нижнюю коробку.
Вентиляторы. Для больших узлов возможно использование подвесных вентиляторов под радиаторами или сбоку от них для обеспечения принудительного движения воздуха и естественного масляного и принудительного воздушного (ONAF) охлаждения. Это может увеличить нагрузочную способность трансформаторов примерно на 25%.
Теплообменники с принудительной циркуляцией масла, воздуха. В больших трансформаторах отведение тепла при помощи естественной циркуляции через радиаторы требует много места. Потребность в пространстве для компактных охладителей намного ниже, чем для простых радиаторных батарей. С точки зрения экономии места может оказаться выгодным использовать компактные охладители со значительным аэродинамическим сопротивлением, что требует применения принудительной циркуляции масла с помощью насоса и мощных вентиляторов для нагнетания воздуха.
Масляно-водяные охладители, как правило, представляют собой цилиндрические трубчатые теплообменники со съёмными трубками. Такие теплообменники очень распространены и представляют собой классическую технологию. Они имеют разнообразное применение в промышленности. Более современные конструкции, например, плоские теплообменники мембранного типа, еще не вошли в практику.
Масляные насосы. Циркуляционные насосы для масляного охлаждающего оборудования – это специальные компактные, полностью герметичные конструкции. Двигатель погружён в трансформаторное масло; сальниковые коробки отсутствуют.


Оборудование для стабилизации напряжения



Большинство трансформаторов оборудовано некоторыми приспособлениями для настройки коэффициента трансформации путём добавления или отключения числа витков.

Настройка может производиться с помощью переключателя числа витков трансформатора под нагрузкой либо путем выбора положения болтового соединения при обесточенном и заземлённом трансформаторе.

Бывают:
Переключатели числа витков без нагрузки
Переключатели числа витков под нагрузкой

Навесное оборудование


Газовое реле

Газовое реле обычно находится в соединительной трубке между баком и расширительным баком. Газовое реле выполняет две функции:
накапливает свободные пузырьки газа, которые движутся в направлении расширительного бака из бака трансформатора;
функцию датчика, когда поток масла между баком и расширительным баком превышает заданную величину .


Индикация температуры

Термометры обычно устанавливают для измерения температуры масла в верхнем слое и для индикации точек опасного перегрева в обмотке.


Встроенные трансформаторы тока

Трансформаторы тока могут располагаться внутри трансформатора, часто вблизи заземленного рукава на стороне масла проходных изоляторов, а также на низковольтных шинах. В данном вопросе роль играют цена, компактность и безопасность. При таком решении отпадает необходимость иметь несколько отдельных трансформаторов тока на сортировочной станции с внешней и внутренней изоляцией, рассчитанной на высокое напряжение.


Поглотители влаги

Необходимо удалить влагу из воздушного пространства над уровнем масла в расширительном баке, чтобы обеспечить отсутствие воды в масле трансформатора.


Системы защиты масла

Самой обычной системой защиты масла является открытый расширительный бак, в котором воздух над уровнем масла вентилируется через влагопоглотительное устройство.

Расширительный бак трансформатора может быть снабжён надувной подушкой. Надувная подушка из синтетического каучука располагается над маслом. Внутренне пространство подушки соединено с атмосферой, поэтому она может вдыхать воздух, когда трансформатор охлаждается и объем масла сжимается, и выдыхать воздух, когда трансформатор нагревается.

Другим решением является расширительный бак, который разделён в горизонтальной плоскости мембраной или диафрагмой, которая позволяет маслу расширяться или сжиматься без прямого контакта с наружным воздухом.

Пространство над маслом в расширительном баке можно заполнить азотом. Это можно делать из баллона со сжатым газом через редукторный клапан. Когда трансформатор вдыхает, редукторный клапан выпускает азот из баллона. Когда объём увеличивается, азот уходит в атмосферу через вентиляционный клапан.

Для того, чтобы сэкономить потребление азота, можно задать некий шаг давления между наполнением азотом и выпусканием азота.

Трансформаторы могут иметь герметическое исполнение. В маленьких маслонаполненных распределительных трансформаторах упругий гофрированный бак может компенсировать расширение масла. В ином случае необходимо обеспечить пространство над маслом внутри трансформаторного бака, заполненное сухим воздухом или азотом, чтобы они выполняли роль подушки при расширении или сжатии масла.

Можно использовать сочетание различных решений. Трансформаторный бак может быть полностью заполнен маслом, и при этом иметь большой расширительный бак достаточного объёма для расширения масла и необходимой газовой подушки. Эта газовая подушка может иметь продолжение в следующем дополнительном баке, возможно на уровне земли. Для ограничения объёма газовой подушки можно открыть сообщение с наружной атмосферой при заданных верхнем и нижнем пределах внутреннего давления.


Указатели уровня масла

Указатели уровня масла применяются для определения уровня масла в расширительном баке, как правило, это приборы с циферблатом, установленные прямо на расширительном баке.


Устройства сброса давления

Дуговой разряд или короткое замыкание, которые возникают в маслонаполненном трансформаторе, обычно сопровождаются возникновением сверхдавления в баке из-за газа, образующегося при разложении и испарении масла. Устройство сброса давления предназначено для снижения уровня сверхдавления вследствие внутреннего короткого замыкания и, таким образом, уменьшения риск разрыва бака и неконтролируемой утечки масла, которое может также осложниться возгоранием вследствие короткого замыкания. Малый вес тарелки клапана и низкая пружинная жёсткость закрывающих пружин обеспечивает быстрое и широкое открывание. Клапан вновь возвращается в нормальное закрытое состояние, когда сверхдавление спущено.


Устройства защиты от внезапного повышения давления

Реле внезапного повышения давления предназначено для срабатывания при возникновении упругой масляной волны в баке трансформатора при серьёзных замыканиях. Это устройство способно различать быстрое и медленное нарастание давления и автоматически отключает выключатель, если давление растёт быстрее, чем задано.


Устройства защиты от перенапряжений

Устройствами защиты силовых трансформаторов яявляются. Элементы РЗиА, на трасформаторах 6/10кВ чаще используются плавкие предохранители

Колеса/полозья для транспортировки

Крупные агрегаты на практике редко доставляются с помощью крана на своё место установки на фундаменте. Их необходимо каким-то способом перемещать от транспортного средства до основания. Если от места разгрузки с транспортного средства до места конечного монтажа агрегата проложены литые рельсы, то агрегат может быть оборудован колёсами для качения. Поворот на 90 градусов в транспортных целях обеспечивают колёса, работающие в двух направлениях. Агрегат поднимают подъёмником и поворачивают колёса. Когда агрегат установлен на месте, то застопоренные колёса могут быть на нем или сняты и заменены опорными блоками. Можно также опустить агрегат прямо на фундамент.

Если такая рельсовая система не предусмотрена, то используют обычные плоские направляющие. Агрегат толкают по смазанным направляющим прямо на место установки, или используют гусеничную цепь.

Агрегат можно приварить к фундаменту, на котором он установлен. Агрегат можно также поставить на вибрационное основание для уменьшения передачи шума через фундамент.


Детектор горючих газов

Детектор горючих газов указывает на присутствие водорода в масле. Водород отлавливается через диалитическую мембрану. Эта система дает раннюю индикацию медленного процесса газогенерации еще до того, как свободный газ начнёт барботировать в направлении газонакопительного реле.


Расходомер

Для контроля вытекания масла из насосов в трансформаторах с принудительным охлаждением устанавливаются масляные расходомеры. Работа расходомера обычно основана на измерении разницы давления по обе стороны от препятствия в потоке масла. Расходомеры также применяются для измерения расхода воды в водоохлаждаемых трансформаторах.

Обычно расходомеры оборудованы аварийной сигнализацией. Они также могут иметь циферблатный индикатор.

Условное обозначение трансформаторов

Структурная схема условного обозначения трансформатора

 

 

Буквенная часть условного обозначения должна содержать обозначения в следующем порядке:
А - автотрансформатор;
О или Т - однофазный или трехфазный трансформатор;
Р - расщепленная обмотка НН;
З - исполнение трансформатора с естественным масляным охлаждением или с охлаждением негорючим жидким диэлектриком с защитой при помощи азотной подушки без расширителя;
Л - исполнение трансформатора с литой изоляцией;
Т - трехобмоточный трансформатор (Для двухобмоточных трансформаторов не указывают);
Н - трансформатор с РПН;
С - исполнение трансформатора собственных нужд электростанций.

Потери в трансформаторах

Степень потерь (и снижения КПД) в трансформаторе зависит, главным образом, от качества, конструкции и материала «трансформаторного железа» (электротехническая сталь). Потери в стали состоят в основном из потерь на нагрев сердечника, на гистерезис и вихревые токи. Потери в трансформаторе, где «железо» монолитное значительно больше, чем в трансформаторе, где оно составлено из многих секций (так как в этом случае уменьшается количество вихревых токов). На практике монолитные сердечники не применяются. Для снижения потерь в магнитопроводе трансформатора, также, магнитопровод изготаливается из специальных сортов трансформаторной стали с добавлением кремния, который повышает удельное сопротивление железа электрическому току, а сами пластины лакируются для изоляции друг от друга. Кроме того потери в трансформаторе добавляются за счёт нагрева проводов. Это учитывается в схеме замещения реального трансформатора при помощи активного сопротивления.


Режимы работы трансформатора


1. Режим холостого хода. Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. С помощью опыта холостого хода можно определить КПД трансформатора, коэффициент трансформации, а также потери в стали.

2. Нагрузочный режим. Этот режим характеризуется замкнутой на нагрузке вторичной цепи трансформатора. Данный режим является основным рабочим для трансформатора.

3. Режим короткого замыкания. Этот режим получается в результате замыкания вторичной цепи накоротко. С его помощью можно определить потери полезной мощности на нагрев проводов в цепи трансформатора.

схемы соединения обмоток трансформатора



Y-соединение, так называемой соединение звездой, где все три обмотки соединены вместе одним концом каждой из обмоток в одной точке, называемой нейтральной точкой или звездой

 

D-соединение, так называемое дельта-соединение, или соединение треугольником, где три фазных обмотки соединены последовательно и образуют кольцо (или треугольник)